Abstract
Clonal embryonic endothelial progenitor cells (eEPCs) isolated from embryonic day 7.5 mice home specifically to hypoxic areas in mouse tumor metastases but spare normal organs and do not form carcinomas. Based on these results, we assessed the potential of eEPCs to enhance vascularization and limit organ dysfunction after ischemia in syngenic and xenotypic organisms. The angiogenic potential of eEPCs was evaluated in chronic ischemic rabbit hindlimbs after regional application by retroinfusion. eEPC treatment improved limb perfusion, paralleled by an increase in capillary density and collateral blood vessel number. Systemic eEPC infusion into mice after ischemic cardiac insult increased postischemic heart output measured by a marked improvement in left ventricle developed pressure and both systolic and diastolic functions. In vitro, eEPCs strongly induced vascular outgrowths from aortic rings. To address the molecular basis of this intrinsic angiogenic potential, we investigated the eEPC transcriptome. Genome-wide Affymetrix GeneChip analysis revealed that the eEPCs express a wealth of secreted factors known to induce angiogenesis, tissue remodeling, and organogenesis that may contribute to the eEPC-mediated beneficial effects. Our findings show that eEPCs induce blood vessel growth and cardioprotection in severe ischemic conditions providing a readily available source to study the mechanisms of neovascularization and tissue recovery.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.