Abstract

Embryonic Array (EA) with different configuration methods will directly affect its reliability and hardware consumption. At present, EA configuration design is lack of quantitative analysis method. In order to reasonably optimize EA configuration design, an EA configuration optimization design method is proposed, which is based on the constraints of EA hardware consumption and reliability. Through the analysis of EA working process and composition, quantitative analysis of EA reliability and hardware consumption are completed. Based on the constraints of EA hardware consumption and reliability, the mathematical model of EA configuration optimization design is established, which transfers EA configuration optimization design into an integer nonlinear programming model problem. According to the difference of the fitness value of individual waiting for mutation in population, adaptive mutation operator and crossover operator are selected, and a novel Modified Adaptive Differential Evolution (MADE) algorithm is proposed, which is used to solve EA configuration optimization design problem. Simulation experiments and analysis indicate that the MADE is able to effectively improve the speed, accuracy and stability of algorithm. Moreover, the proposed EA configuration optimization design method can select the most reasonable EA configuration design, and play an important guiding role in EA optimization design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.