Abstract

BackgroundSnakes are considered to be vomerolfaction specialists. They are members of one of the most diverse groups of vertebrates, Squamata. The vomeronasal organ and the associated structures (such as the lacrimal duct, choanal groove, lamina transversalis anterior and cupola Jacobsoni) of adult lizards and snakes have received much anatomical, histological, physiological and behavioural attention. However, only limited embryological investigation into these structures, constrained to some anatomical or cellular studies and brief surveys, has been carried out thus far. The purpose of this study was, first, to examine the embryonic development of the vomeronasal organ and the associated structures in the grass snake (Natrix natrix), using three-dimensional reconstructions based on histological studies, and, second, to compare the obtained results with those presented in known publications on other snakes and lizards.ResultsFive major developmental processes were taken into consideration in this study: separation of the vomeronasal organ from the nasal cavity and its specialization, development of the mushroom body, formation of the lacrimal duct, development of the cupola Jacobsoni and its relation to the vomeronasal nerve, and specialization of the sensory epithelium. Our visualizations showed the VNO in relation to the nasal cavity, choanal groove, lacrimal duct and cupola Jacobsoni at different embryonic stages. We confirmed that the choanal groove disappears gradually, which indicates that this structure is absent in adult grass snakes. On our histological sections, we observed a gradual growth in the height of the columns of the vomeronasal sensory epithelium and widening of the spaces between them.ConclusionsThe main ophidian taxa (Scolecophidia, Henophidia and Caenophidia), just like other squamate clades, seem to be evolutionarily conservative at some levels with respect to the VNO and associated structures morphology. Thus, it was possible to homologize certain embryonic levels of the anatomical and histological complexity, observed in the grass snake, with adult conditions of certain groups of Squamata. This may reflect evolutionary shift in Squamata from visually oriented predators to vomerolfaction specialists. Our descriptions offer material useful for future comparative studies of Squamata, both at their anatomical and histological levels.

Highlights

  • Snakes are considered to be vomerolfaction specialists

  • The purpose of this study was to examine the embryonic development of the vomeronasal organ (VNO), lacrimal duct and other associated structures of the grass snake, Natrix natrix (Squamata: Natricinae) using three-dimensional reconstructions based on our histological studies

  • Concurrent developmental processes occurring during the development of the VNO and associated structures: 1. separation of the VNO from the nasal cavity and its specialization, 2. development of the mushroom body, 3. formation of the lacrimal duct, 4. development of the cupola Jacobsoni and its relation to the vomeronasal nerve, 5. specialisation of the vomeronasal sensory epithelium

Read more

Summary

Introduction

Snakes are considered to be vomerolfaction specialists. They are members of one of the most diverse groups of vertebrates, Squamata. The vomeronasal organ and the associated structures (such as the lacrimal duct, choanal groove, lamina transversalis anterior and cupola Jacobsoni) of adult lizards and snakes have received much anatomical, histological, physiological and behavioural attention. A growing body of evidence suggests that secretions of the Harderian gland, drained by the lacrimal or nasolacrimal duct, are linked with the chemoreceptive function of the vomeronasal organ. These two additional components should be considered as parts of the VNS [13,14,15,16]. In Squamata, the lacrimal or nasolacrimal duct discharges directly into the duct of the VNO, as in snakes, or is connected with the choanal groove, as in most lizards [23, 24, 27]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call