Abstract

Large vestibular aqueduct syndrome (LVAS) is a significant cause of hearing loss in early childhood. Many theories on the origins and causes of LVAS have been proposed, including arrest or maldevelopment of the vestibular labyrinth in embryonic life. Prior studies have described postnatal and adult vestibular aqueduct anatomy, but none has analyzed aqueduct growth throughout embryonic life. This study was undertaken to characterize the growth of the developing vestibular aqueduct to gain a better understanding of the possible origins of LVAS. Basic science, temporal bone histopathological study. Serial sections from 48 temporal bones from human embryos ranging in age from 5 weeks' gestation to full term were studied with computer image analysis. Measurements of vestibular aqueduct internal and external aperture, midportion diameter, and length were analyzed to obtain a growth model of development. The vestibular aqueduct grows in a nonlinear fashion throughout embryonic life. All parameters fit a similar growth curve and never reached a maximum or began narrowing during development. Growth in one parameter correlated well with growth of another. There was good side-to-side correlation with all but the external aperture. Most of the membranous labyrinth reaches adult size by 20 weeks' gestation, but the vestibular aqueduct grows throughout embryonic life. The measurements and growth model obtained in this study are not consistent with the theory that LVAS results from an arrest in development early in fetal life. The data suggest that LVAS may result from postnatal and early childhood maldevelopment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call