Abstract

Human embryonic stem cell (hESC) and human-induced pluripotent stem cell (hiPSC) technologies have a critical role in regenerative strategies for personalized medicine. Both share the ability to differentiate into almost any cell type of the human body. The study of their properties and clinical applications requires the development of robust and reproducible cell culture paradigms that direct cell differentiation toward a specific phenotype in vitro and in vivo. Our group evaluated the potential of mouse ESCs (mESCs), hESCs, and hiPSCs (collectively named pluripotent stem cells, PSCs) to analyze brain microenvironments through the use of embryoid body (EB)-derived cells from these cell sources. EB are cell aggregates in 3D culture conditions that recapitulate embryonic development. Our approach focuses on studying the midbrain dopaminergic phenotype and transplanting EB into the substantia nigra pars compacta (SNpc) in a Parkinson's disease rodent model. Here, we describe cell culture protocols for EB generation from PSCs that show significant in vivo differentiation toward dopaminergic neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call