Abstract

Variation in size at hatching is common in demersal spawning organisms, suggesting that processes during embryonic development may be critical in determining growth and development. To examine critical periods during embryonic development in the demersal spawning reef fish Amphiprion melanopus, the rate of oxygen consumption within an egg clutch was compared to morphological changes in the embryos. Oxygen consumption was least on day 1 of development where organ differentiation had not begun (mean 1.73±0.34×10 −5 μmol O 2 egg −1 s −1). Tail movement throughout the perivitelline fluid began on day 3 and is likely to assist in moving oxygen around the embryo, complementing diffusive transport. The appearance of haemoglobin in the blood corresponded to a peak in oxygen consumption on day 4, where the highest mean rate of oxygen consumption was recorded (6.73±0.82×10 −5 μmol O 2 egg −1 s −1). This could be a critical period in development whereby risk of mortality is increased through increased embryo requirements at developmental thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.