Abstract

Stable isotopes have become an accepted method to track resource acquisition and nutrient utilization by birds. Many studies have used these methods to examine nutrient allocation and utilization during egg formation. None, however, has addressed the potential influence of nutrient utilization and movement during embryo development on the isotopic signature of egg components or its implications for sampling protocols. Such fractionation would distort the isotopic signature in incubated eggs, resulting in conclusions based on eggs that may not reflect resource allocation during formation. Using incubated domestic chicken (Gallus gallus) eggs, we examined how embryo development influences δ13C and δ15N signatures in albumen, yolk protein, and yolk lipid. Embryo development significantly lowered δ15N by 1.0‰ in yolk protein after day 15 and depleted δ13C by 0.2‰ in albumen after just 3 days. Future studies examining resource allocation to eggs must control for the influence of embryonic development on isotopic signatures in eggs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.