Abstract

Hydrogen-induced degradation of mechanical properties of a duplex stainless steel in 0.1N H2SO4 solution has been studied under in situ cathodic charging conditions. Significant reductions in percentage of elongation, toughness, and time to failure were noticed due to the ingress of hydrogen into the material at various applied cathodic potentials in the range of −200 to −800 mV (SCE). Cleavage fractures were identified mainly in the ferritic phases. Crack growth was observed to be inhibited by the austenite phase. However, depending on the severity of the environment, both the ferrite and austenite phases could be embrittled. At less negative potentials, presence of surface film and low hydrogen fugacity seemed to control hydrogen ingress in the metal. Addition of thiosulfate to the acidic solution further degraded the mechanical properties of the steel at the applied cathodic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.