Abstract
Genomics is fast becoming a routine tool in medical diagnostics and cutting-edge biotechnologies. Yet, its use for environmental biomonitoring is still considered a futuristic ideal. Until now, environmental genomics was mainly used as a replacement of the burdensome morphological identification, to screen known morphologically distinguishable bioindicator taxa. While prokaryotic and eukaryotic microbial diversity is of key importance in ecosystem functioning, its implementation in biomonitoring programs is still largely unappreciated, mainly because of difficulties in identifying microbes and limited knowledge of their ecological functions. Here, we argue that the combination of massive environmental genomics microbial data with machine learning algorithms can be extremely powerful for biomonitoring programs and pave the way to fill important gaps in our understanding of microbial ecology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.