Abstract

The aim of this work is to investigate the use of microtopographies in providing physical cues to modulate the cellular response of human mesenchymal stem cells on ceramics. Two microgrooved patterns (100 μm/50 μm, 10 μm/10 μm groove/pitch) were transcribed reversely onto alumina green ceramic tapes via an embossing technique followed by sintering. Characterization of the micropatterned alumina surfaces and their cellular response was carried out. Spread and polygonal cell morphologies were observed on the wider groove (50 μm/100 μm) surface. Cells seeded onto the narrow groove (10 μm/10 μm) surface aligned themselves alongside the grooves, resulting in more elongated cell morphology. More osteoid matrix nodules shown by osteopontin and osteocalcin biomarkers were detected on the larger grooved surfaces after cell culture of 21 days, indicating a greater level of osteogenicity. This study has shown that micropatterned wider groove (50 μm) topographies are more suitable surfaces for improving osseointegration of ceramic implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.