Abstract
Life cycle CO2 emissions (LCCEs) including embodied and operational CO2 emissions (ECEs and OCEs) should be comprehensively understood for establishing strategies for reducing CO2 emissions of buildings. Meanwhile, as the climate has a huge impact on building energy consumption, ECEs and OCEs should be investigated considering the climate. This study investigated the relation between ECEs and OCEs of buildings in different climate zones by conducting life cycle assessment and statistical analysis of 39 elementary school buildings in South Korea. As a result, the climate zone was determined to be the significant influence factors. The mean values of ECEs, OCEs, and LCCEs in central region were 611, 2,81 7, and 3,428 kg-CO2/m2, respectively, and those in southern region were 620, 1,652, and 2,273 kg-CO2/m2. The OCEs in central region was significantly higher than that in southern region, but the ECEs was not. In particular, ECEs and OCEs had a significant inverse correlation in central region but not in southern region. The results indicate that different strategies should be established depending on the climate zone. For instance, the thermal insulation levels should be further strengthened to reduce OCEs in central region compared to those of southern region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.