Abstract

ObjectiveThis study was conducted to evaluate the effect of embelin (EMB) on various epileptic models and related brain inflammation. MethodsMale Swiss albino mice were administered EMB (5, 10, and 20 mg/kg/p.o.) in acute and chronic study for 7 days and 35 days, respectively. Acute study included increasing current electroshock (ICES) and pentylenetetrazol (PTZ)-induced seizure test. Step-down latency (SDL) and forced swim test (FST) were performed to evaluate cognitive functions and depression-like behavior, respectively. Chronic study included PTZ-induced kindling. Levels of inflammatory biomarkers, namely interleukin-1 beta (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), were estimated in the hippocampus and cortex of the kindled brains by ELISA technique. Further, neurotransmitters (NTs), namely gamma aminobutyric acid (GABA), glutamate, and dopamine, were estimated by using validated liquid chromatography–mass spectrometry (LC–MS) method followed by ultra-high-performance liquid chromatography (UHPLC). ResultsEmbelin (EMB) treatment increased the seizure threshold to hind limb extension (HLE) in the ICES test and decreased the seizure scores in the kindling experiment. Significantly low levels of IL-1β, IL-1Ra, IL-6, and TNF-α were observed in the hippocampus of PTZ + EMB (10 and 20 mg/kg)-treated groups compared with PTZ+ vehicle-treated group. Significantly lower levels of IL-1Ra, IL-6, and TNF-α compared with PTZ+ vehicle-treated group were observed in the cortex of PTZ + EMB (10 and 20 mg/kg)-treated groups, while IL-1β levels were found to be significantly lower only in the cortex of PTZ + EMB (20 mg/kg)-treated group. Increased levels of dopamine and GABA and decreased levels of glutamate in both hippocampus and cortex were observed in EMB + PTZ-treated groups compared with vehicle + PTZ-treated group. Latency of step down was found to be increased and immobility time in FST was decreased in EMB + PTZ groups compared with vehicle + PTZ group. ConclusionEmbelin suppressed epileptogenesis in the kindled mice via neurochemical modulation of neurotransmitters and inhibiting the inflammatory pathway. Further, EMB was also observed to be protecting the kindled animals from cognition and depression-like behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call