Abstract

The present study was carried out to assess the photosensitizing potential of embelin, the biologically active natural product isolated from Embelia ribes in photodynamic therapy (PDT) experiments in vivo. In vitro PDT clearly indicated that embelin recorded significant cytotoxicity in Ehrlich's Ascites Carcinoma (EAC) cells, which is superior to 5-aminolevulinic acid, a known photodynamic compound. For in vivo experiments solid tumor was induced using EAC cells in the male Swiss albino mice of groups I, II, III and IV. Group I served as the control (without solid tumor), group II served as tumor bearing mice without treatment and groups III and IV served as treatments. At the completion of 4 weeks of induction, the tumor bearing mice from group III and IV were given an intraperitoneal injection with embelin (12.5mg/kg body weight). After 24h, tumor area in the Group III and IV animals was exposed to visible light from a 1000W halogen lamp. The mice from groups I to III were sacrificed 2 weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], β-d-glucuronidase, and rhodanese) were assayed and expression of Bcl-2 and Bax were analyzed in normal and tumor tissues. Animals from group IV were sacrificed after 90 days of PDT treatment and the above mentioned parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treated groups. This is the first report on PDT using a natural compound for solid tumor control in vivo. The uniqueness of the mode of treatment lies in the selective uptake of the nontoxic natural compound, embelin from the medicinal plant E. ribes used in Indian system of medicine, by the solid tumor cells and their selective destruction using PDT without affecting the neighboring normal cells, which is much advantageous over radiation therapy now frequently used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.