Abstract
By inserting a nano-sized Ag layer between bottom Ag-doped In2O3 (AIO) and a top AIO layer, we were able to control the sheet resistance and optical transmittance of AIO films for application in organic solar cells (OSCs) as a transparent electrode. To optimize the AIO/Ag/AIO multilayer, we investigated the electrical, optical, structural and morphological properties of the AIO/Ag/AIO multilayer as a function of Ag interlayer thickness with a constant bottom and top AIO thickness of 35nm. The optimized AIO/Ag/AIO multilayer showed a much lower resistivity of 3.988×10−5Ωcm and a higher optical transmittance of 84.79% than the values (4.625×10−4Ωcm and 78.36%) of the single AIO film, due to the high conductivity of the metallic Ag layer and the antireflection effect of the symmetric AIO/Ag/AIO structure. In addition, we investigated the performances of OSCs with AIO/Ag/AIO electrodes as a function of Ag interlayer thickness to determine the optimal Ag thickness to produce a high power conversion efficiency (PCE) of the OSCs. Based on the PCE of the OSCs, we correlated the performance of the OSCs with the Ag interlayer thickness in the AIO/Ag/AIO multilayer and suggested a possible mechanism to explain the dependency of PCE on Ag thickness in AIO/Ag/AIO multilayer electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.