Abstract

In this research, we present a method for the embedment of hydroxyapatite (HA) into superplastic Ti6Al4V where the elements of HA and Ti6Al4V diffuse into each other to form a high quality implanted layer. The implantation process into superplastic titanium alloy was divided to two steps; first, the superplastic forming of Ti6Al4V was carried out using high-temperature compression test machine. In the second step, HA was embedded into superplastic Ti6Al4V by using a special designed clamp with an initial compressive load at high temperatures. The EDX and Line Scanning analyses indicate that the resulted film is composed of elements of HA and titanium alloy and due to the diffusion of HA and Ti6Al4V elements into each other, a good embedment is achieved. The elemental diffusion of HA and Ti6Al4V increases by increasing the temperature of the implantation process therefore the thickness of the implanted layer and the hardness of the embedded surface increase with the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.