Abstract

Using different types of embeddings of equations of motion we investigate the existence of generalizations of the "New Massive Gravity" (NMG) model with the same particle content (massive gravitons). By using the Weyl symmetry as a guiding principle for the embeddings we show that the Noether gauge embedding approach leads us to a sixth order model in derivatives with either a massive or a massless ghost. If the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost free and Weyl invariant at linearized level. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. We also prove to all orders in derivatives that there is no local, ghost free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in later case we can replace the Einstein-Hilbert action by specific $f(R,\Box\, R)$ generalizations and still keep the theory ghost free at linearized level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call