Abstract
It is a trivial consequence of Magnus' solution to the word problem for one-relator groups [9] and the existence of finitely presented groups with unsolvable word problem [4] that not every finitely presented group can be embedded in a one-relator group. We modify a construction of Aanderaa [1] to show that any finitely presented group can be embedded in a group with twenty-six defining relations. It then follows from the well-known theorem of Higman [7] that there is a fixed group with twenty-six defining relations in which every recursively presented group is embedded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.