Abstract
Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be embedded in Kleene’s first model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.