Abstract
We consider embedding metrics induced by trees into Euclidean spaces with a restricted number of dimensions. We show that any weighted tree T with n vertices and L leaves can be embedded into d -dimensional Euclidean space with O (L 1/(d-1) ) distortion. Furthermore, we exhibit an embedding with almost the same distortion which can be computed efficiently. This distortion substantially improves the previous best upper bound of \tilde O (n 2/d ) and almost matches the best known lower bound of Ω(L 1/d ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.