Abstract
It is known that a linear spaces of dimensiond has at least as many hyperplanes as points with equality if it is a (possibly degenerate) projective space. If there are only a few more hyperplanes than points, then the linear space can still be embedded in a projective space of the same dimension. But even if the difference between the number of hyperplanes and points is too big to ensure an embedding, it seems likely that the linear space is closely related to a projective space. We shall demonstrate this in the cased=4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.