Abstract
Protecting coherent quantum dynamics from chaotic environment is key to realizations of fragile many-body phenomena and their applications in quantum technology. We present a general construction that embeds a desired periodic orbit into a family of nonintegrable many-body Hamiltonians, whose dynamics is otherwise chaotic. Our construction is based on time-dependent variational principle that projects quantum dynamics onto a manifold of low-entangled states, and it complements earlier approaches for embedding nonthermal eigenstates, known as quantum many-body scars, into thermalizing spectra. By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics, as we illustrate using a driven Affleck-Kennedy-Lieb-Tasaki model and a recent experimental realization of scars in a dimerized superconducting qubit chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.