Abstract

We give a fermionic Fock space description of embedded entangled qubits. Within this framework the problem of classification of pure state entanglement boils down to the problem of classifying spinors. The usual notion of separable states turns out to be just a special case of the one of pure spinors. By using the notion of single, double and mixed occupancy representation with intertwiners relating them a natural physical interpretation of embedded qubits is found. As an application of these ideas one can make a physically sound meaning of some of the direct sum structures showing up in the context of the so-called Black-Hole/Qubit Correspondence. We discuss how the usual invariants for qubits serving as measures of entanglement can be obtained from invariants for spinors in an elegant manner. In particular a detailed case study for recovering the invariants for four-qubits within a spinorial framework is presented. We also observe that reality conditions on complex spinors defining Majorana spinors for embedded qubits boil down to self conjugate states under the Wootters spin flip operation. Finally we conduct a study on the explicit structure of $Spin(16,\mathbb{C})$ invariant polynomials related to the structure of possible measures of entanglement for fermionic systems with 8 modes. Here we find an algebraically independent generating set of the generalized SLOCC invariants and calculate their restriction to the dense orbit. We point out the special role the largest exceptional group $E_8$ is playing in these considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.