Abstract

Recent advance of Additive Manufacturing technologies allows us to manufacture various parts used in real-world products. Consequently, product tracking of such 3D printed parts is an important issue. Quick Response (QR) code which is a two-dimensional matrix barcode invented by Denso, a Japanese automotive industry, in 1994, can be used for this purpose. It can store more data than the 1D barcode in a smaller space, and using a smartphone as a scanner, one can directly visit a website where all the information of the parts is stored. However, QR codes require secondary procedures to add them to products and are also vulnerable to wear and tear. Moreover, QR codes cannot be added to freeform surfaces, but only to developable surfaces. In this paper we propose a novel technique to embed QR codes onto CAD models consisting of freeform surfaces represented by B-spline surfaces, which produces 3D QR codes. 3D QR codes work similar to 2D QR codes and can be read by existing QR scanners, but are designed by grooving the surface to obtain light and dark regions caused by ambient occlusion. Unlike conventional QR codes, 3D QR codes do not fall off from the part and can even be painted if necessary. Furthermore, we do not need to prepare dark-colored and light-colored materials for 3D printing as the dark color is provided by the grooving. We demonstrate the effectiveness of our technique with various examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.