Abstract

Electrolysis of water can generate green hydrogen as a sustainable energy resource, which mitigates the impacts of climate change caused by burning fossil fuels and excessive carbon emissions. Cheap and abundant transition metal compounds are emerging as promising candidates to replace noble metal catalysts. Yet their poor conductivity is a critical challenge to obtain a high activity. In this study, we present a facile approach to construct the nanocomposite of NiSe2 embedded on multi-element (N, S) doped carbon derived from biomass. The synthesized electrocatalyst (NiSe2@C) exhibited an active hydrogen evolution electrocatalyst with a low overpotential of 206 mV to obtain a current density of 10 mA cm−2 and a small Tafel slope of 59 mV dec−1. Electrochemical analysis ascribed the high catalytic performance to the synergistic effect of the NiSe2 nanoparticles with large active sites and the superior conductive carbon framework, boosting the charge transfer for hydrogen generation. The findings may lead to new opportunities for enhancing hydrogen generation from electrochemical water splitting using earth-abundant catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call