Abstract

In real-world applications, objects of multiple types are interconnected, forming Heterogeneous Information Networks. In such heterogeneous information networks, we make the key observation that many interactions happen due to some event and the objects in each event form a complete semantic unit. By taking advantage of such a property, we propose a generic framework called HyperEdge-BasedEmbedding (Hebe) to learn object embeddings with events in heterogeneous information networks, where a hyperedge encompasses the objects participating in one event. The Hebe framework models the proximity among objects in each event with two methods: (1) predicting a target object given other participating objects in the event, and (2) predicting if the event can be observed given all the participating objects. Since each hyperedge encapsulates more information of a given event, Hebe is robust to data sparseness and noise. In addition, Hebe is scalable when the data size spirals. Extensive experiments on large-scale real-world datasets show the efficacy and robustness of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.