Abstract

Kozen and Tiuryn have introduced the substructural logic $\mathsf{S}$ for reasoning about correctness of while programs (ACM TOCL, 2003). The logic $\mathsf{S}$ distinguishes between tests and partial correctness assertions, representing the latter by special implicational formulas. Kozen and Tiuryn's logic extends Kleene altebra with tests, where partial correctness assertions are represented by equations, not terms. Kleene algebra with codomain, $\mathsf{KAC}$, is a one-sorted alternative to Kleene algebra with tests that expands Kleene algebra with an operator that allows to construct a Boolean subalgebra of tests. In this paper we show that Kozen and Tiuryn's logic embeds into the equational theory of the expansion of $\mathsf{KAC}$ with residuals of Kleene algebra multiplication and the upper adjoint of the codomain operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.