Abstract
It is known that static and spherically symmetric black hole solutions of general relativity in different spacetimes can be embedded into higher-dimensional flat spacetime. Given this result, we have explored the thermodynamic nature of black holes á la its embedding into flat spacetime. In particular, we have explicitly demonstrated that black hole temperature can indeed be determined starting from the embedding and hence mapping of the static observers in black hole spacetime to Rindler observers in flat spacetime. Furthermore, by considering the dynamics of a scalar field in the flat spacetime, it is indeed possible to arrive at the area scaling law for black hole entropy. Thus, by using the flat spacetime field theory, one can indeed provide a thermodynamic description of black holes. Implications are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.