Abstract

Ultrafast physical random bit generation at hundreds of Gb/s rates, with verified randomness, is a crucial ingredient in secure communication and has recently emerged using optics-based physical systems. Here we examine the inverse problem and measure the ratio of information bits that can be systematically embedded in a random bit sequence without degrading its certified randomness. These ratios exceed 0.01 in experimentally obtained long random bit sequences. Based on these findings we propose a high-capacity private-key cryptosystem with a finite key length, where the existence as well as the content of the communication is concealed in the random sequence. Our results call for a rethinking of the current quantitative definition of practical classical randomness as well as the measure of randomness generated by quantum methods, which have to include bounds using the proposed inverse information embedding method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.