Abstract

Carbon materials are widely used for supercapacitor applications thanks to their high surface area, good rate capability, and excellent cycling stability. However, the development of high energy density carbon supercapacitors still remains a challenge. In this work, hollow Co3O4 nanoboxes have been embedded into three-dimensional macroporous laser-scribed graphene (LSG) to produce composite electrodes with improved electrochemical performance. Here, Co3O4 provides high capacity through fast and reversible redox reactions, while LSG serves as a conductive network to maintain high power. The open nanobox morphology is a unique solution for extracting the maximum capacity from Co3O4, resulting in electrodes whose surfaces, both internal and external, are accessible to the electrolyte. The electrochemical performance of the composite material is promising with a volumetric capacity of 60.0 C/cm3 and a specific capacity of 542.3 C/g, corresponding to 682.0 C/g of the constituent Co3O4. With a low equivalent series resistance of 0.9 Ω, the Co3O4/LSG electrode is able to maintain 113.1% of its original capacity after 10,000 cycles. This work provides new insights into the design of high-performance carbon/metal oxide nanocomposites for next-generation energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.