Abstract
Heterogeneous information network (HIN) embedding, aiming to project HIN into a low-dimensional space, has attracted considerable research attention. Most of the existing HIN embedding methods focus on preserving the inherent network structure and semantic correlations in Euclidean spaces. However, one fundamental problem is whether the Euclidean spaces are the intrinsic spaces of HIN? Recent researches find the complex network with hyperbolic geometry can naturally reflect some properties, e.g., hierarchical and power-law structure. In this article, we make an effort toward embedding HIN in hyperbolic spaces. We analyze the structures of three HINs and discover some properties, e.g., the power-law distribution, also exist in HINs. Therefore, we propose a novel HIN embedding model HHNE. Specifically, to capture the structure and semantic relations between nodes, HHNE employs the meta-path guided random walk to sample the sequences for each node. Then HHNE exploits the hyperbolic distance as the proximity measurement. We also derive an effective optimization strategy to update the hyperbolic embeddings iteratively. Since HHNE optimizes different relations in a single space, we further propose the extended model HHNE++. HHNE++ models different relations in different spaces, which enables it to learn complex interactions in HINs. The optimization strategy of HHNE++ is also derived to update the parameters of HHNE++ in a principle manner. The experimental results demonstrate the effectiveness of our proposed models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.