Abstract
Logical frameworks are computer systems which allow a user to formalise mathematics using specially designed languages based upon mathematical logic and Church's theory of types. They can be used to derive programs from logical specifications, thereby guaranteeing the correctness of the resulting programs. They can also be used to formalise rigorous proofs about logical systems. We compare several methods of implementing the display (sequent) calculus δRA for relation algebra in the logical frameworks Isabelle and Twelf. We aim for an implementation enabling us to formalise, within the logical framework, proof-theoretic results such as the cut-elimination theorem for δRA, and any associated increase in proof length. We discuss issues arising from this requirement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.