Abstract

An efficient, robust and secure audio watermarking algorithm which can hide large number of watermarking bits without perceptually affecting the quality of the audio signal is presented in this paper. The proposed algorithm has been designed using Schur decomposition of wavelet coefficients to achieve the optimal balance between conflicting design parameters of audio watermarking. Schur decomposition makes the proposed method significantly robust against challenging signal processing attacks and discrete wavelet transform provides a good opportunity for the accommodating very high watermarking payload without affecting the perceptual quality. The choice of these two domains complements each other in addressing the contradictory design requirements of watermarking. Experimental results indicate that this algorithm is highly perceptually transparent and have an excellent subjective audible quality at 480 bps embedding capacity. This algorithm has shown very good robustness to the challenging synchronisation attacks like compression and various signal processing attacks at very high payload without affecting the audible quality of the signal. The computation time of the proposed algorithm is also found to be very less making it suitable for real time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.