Abstract

Purpose – The purpose of this paper was to show physical limitation of embedding standard packaging components into printed circuit board (PCB) which is more reasonable technology for small series productions which is popular in industrial products. Embedding electronic components inside a PCB FR-4 substrate leads to significant size reduction and better heat management. Embedded chip technology is already known in many consumer electronics applications, but it is focused on high volumes and required to order components ready to be embedded. Design/methodology/approach – Highly integrated DC/DC converter with standard-package electronic parts (passive and active) was embedded inside a PCB structure. The design and the manufacturing process was based on standard PCB FR-4 technology. Sandwich solution was used to integrate all layers together; one of the main investigations was to focus on how to fill space around components to keep internal stresses on very low level. Findings – There were few considerations during choosing the right concept. The first, which occurred during the first producing round, was the distance between thick copper and inner layer. The second one was the way how to fill space between mounted components on inner layer and isolation laminate. A few trials took place and it is decided that it is impossible to fill this space with resin from prepregs; therefore, a casting compound was used. Originality/value – Design and manufacturing process which brings 37 per cent of size reduction of complete DC/DC voltage converter PCB with 28.5 W output power comparing to a reference design with standard surface mounted devices (SMD) and copper layout implementation has been achieved during research project.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.