Abstract

We demonstrate a Rydberg atom-based sensor embedded in a parallel-plate waveguide (PPWG) for amplitude and phase detection of a radio-frequency (RF) electric field. This embedded atomic sensor is also capable of receiving modulated communications signals. In this configuration, the PPWG antenna serves two functions. First, the PPWG antenna acts as a source for a local oscillator (LO) field. The LO is required to use an atomic vapor cell (a glass cell containing a Rydberg atom vapor) as a Rydberg atom-based mixer, which detects the amplitude and phase of a second RF field incident from some remote location. The second function of the PPWG antenna is to capture the RF field arriving from a remote location and concentrate it at the location of the atomic vapor cell for detection. To demonstrate this, we show several examples of phase and amplitude measurements of an RF field with the embedded Rydberg-atom sensor. We also demonstrate the discrimination of the polarization of an RF field and the ability to receive phase-modulated carrier communications signals with this integrated atomic sensor. Embedding the atomic sensor in an antenna allows for the full characterization of a radio frequency field, in that the magnitude, phase, and polarization of an RF field can be measured with one compact integrated quantum-based sensor. Furthermore, the embedded sensor head allows one to easily vary the LO in order to maximize the ability to measure phase and amplitude of the field or modulated signal.

Highlights

  • There is a rapidly growing interest in the potential applications of Rydberg atom-based sensors

  • We have introduced a Rydberg atom-based embedded sensor, which consists of an atomic vapor cell embedded in a parallel plate waveguide antenna

  • This atomic embedded sensor allows for the measurement and detection of both the amplitude and phase of an RF continuous wave (CW) field as well as modulated signals

Read more

Summary

Introduction

There is a rapidly growing interest in the potential applications of Rydberg atom-based sensors. These type of sensors can replace the front-end components and electronics in a conventional antenna/receiver system, and as such, they have potential advantages over conventional systems. Rydberg atoms have one or more electrons excited to a very high principal quantum number n [1], which have many useful properties that scale with n. Their large dipole moments (scale as n2) make the atoms sensitive to electric (E). The basic idea uses a technique known as electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting to detect a radio-frequency (RF) E-field, where the E-field is shown to be directly proportional to Planck’s constant, which is exactly defined in the re-definition of the SI [2] and [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.