Abstract

Traditional slurry-based electrodes consist of heavy current collectors and electroactive materials with a low weight percentage, which inevitably increase the total weight and cost of lithium-ion batteries (LIBs). Consequently, the development of low-cost, lightweight, flexible and binder-free electrodes for LIBs is highly desirable but also greatly challenging. In this work, we report the synthesis of small ZnO nanoparticles uniformly embedded in N-doped carbon (NC) nanoplate arrays (NPAs) tightly grown on a N-doped carbon paper (NCP) substrate (ZnO/NC NPAs@NCP) through a facile metal-organic framework-engaged strategy. This electrode design not only avoids the utilisation of insulating polymer binders but also offers other advantages, including large electrode/electrolyte contact areas, abundant electroactive sites, good wettability of the electrolyte, fast electron/ion transport and efficient volume accommodation. Notably, the freestanding ZnO/NC NPAs@NCP electrode displays a high reversible capacity of 610 mA h g−1 (based on the mass of entire electrode) at a current density of 100 mA g−1 for 50 cycles and excellent long-term cycling stability (363 mA h g−1 at 500 mA g−1 for 200 cycles). Furthermore, a full cell employing ZnO/NC NPAs@NCP as the anode and commercial LiFePO4 as the cathode is constructed, indicating the feasibility for practical application. Moreover, an analysis of the electrode kinetics confirms the favourable lithium-ion storage kinetics within the ZnO/NC NPAs@NCP electrode. The present work could provide a new approach to develop low-cost, lightweight and flexible electrodes for advanced energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call