Abstract

We present an embedded image coder based on a statistical characterization of natural images in the wavelet transform domain. We describe the joint distribution between pairs of coefficients at adjacent spatial locations, orientations, and scales. Although the raw coefficients are nearly, uncorrelated, their magnitudes are highly correlated. A linear magnitude predictor coupled with both multiplicative and additive uncertainties, provides a reasonable description of the conditional probability densities. We use this model to construct an image coder called EPWIC (embedded predictive wavelet image coder), in which subband coefficients are encoded one bit-plane at a time using a non-adaptive arithmetic encoder. Bit-planes are ordered using a greedy algorithm that considers the MSE reduction per encoded bit. We demonstrate the quality of the statistical characterization by comparing rate-distortion curves of the coder to several standard coders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.