Abstract

AbstractThe strong discontinuity approach to modelling strain localization, combined with an enhanced strain element, has been used for more than a decade to model strain localization in materials including geomaterials. Most implementations of enhanced strain elements in the post‐localization regime use very simple constitutive formulations along the discontinuity, such as linear softening or a constant friction coefficient. However, the softening relations can be much more complex for geomaterials. For rocks this softening is induced by micro‐fractures coalescing into macroscopic cracks during a narrow time interval called ‘slip weakening.’ During this interval the cohesive resistance on the nucleating crack decays to zero while the frictional resistance increases. Furthermore, research has shown that the coefficient of friction for these materials is not constant, but in fact is a function both of the slip speed and the state of the material, including wear, temperature, and other factors. In this paper we augment the modelling capabilities of an enhanced strain element by incorporating a cohesive softening law and a popular rate‐ and state‐dependent friction model commonly used for describing the constitutive properties of rocks and rock‐like materials sliding along the fractured surface. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.