Abstract

The winding or layup procedure for fiber-reinforced composites lends itself to convenient installation of embedded sensors during fabrication. These permanently installed and protected sensors could be used during the service lifetime of the structure to monitor real-time conditions and determine when loading or vibration is excessive, and when damage has occurred. Such ‘smart or intelligent’ structures could be used to provide continuous ‘health monitoring’ of the structure as well as provide input for active vibration control. In the present study, two sizes of constantan wire (0.15-mm and 0.025-mm diameter) with a very thin but tough polyimide insulation were embedded in graphite-epoxy bars and tubes. The 25-mm by 2.5-mm by approximately 300-mm long bars were fabricated from hand-laid-up panels and subjected to static four-point bending and cantilever bending. The tubes (42-mm diameter by 1.25-m long) were subjected to static cantilever bending. Output from the constantan wire was monitored with conventional strain-gage indicators. Results indicate accurate tensile and compressive measurements of the integrated strain along the length of the constantan wire when compared with beam formulas and surface mounted strain gages. The constantan strain wire shows promise as an embedded sensor for ‘smart structures’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.