Abstract

Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with [Formula: see text]-body random interactions and its relation to the Sachdev–Ye–Kitaev (SYK) model for majorana fermions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.