Abstract

Two different room-temperature processes for the electron beam induced deposition of high purity platinum (Pt), using the standard MeCpPtMe3 precursor and oxygen for purification, have been investigated. The first process is a sequential method, which uses two independent gas injector systems (GIS) in order to perform a standard Pt deposition, followed by an e-beam post-irradiation under oxygen flux. The second process is a parallel, single-step process that includes a simultaneous flow of both precursor and oxygen, using an add-on device that can be mounted on the standard GIS needle. Both processes are effective in producing high purity Pt depositions close to 100 at%. The first method requires a high current and irradiation dose in the clean-up phase, and provides Pt structures with small voids, a maximum thickness of around 100 nm and resistivity of 88 ± 10 μΩ cm. The second method requires a high oxygen/precursor flux ratio and produces void-free structures with resistivity of 60 ± 5 μΩ cm, only six times the bulk value for Pt. The second method is easier to use and produces a void-free deposition of high purity Pt.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.