Abstract

In this study, an analysis system embedding neuron-fuzzy prediction in feature extraction is proposed for brain-computer interface (BCI) applications. Wavelet-fractal features combined with neuro-fuzzy predictions are applied for feature extraction in motor imagery (MI) discrimination. The features are extracted from the electroencephalography (EEG) signals recorded from participants performing left and right MI. Time-series predictions are performed by training 2 adaptive neuro-fuzzy inference systems (ANFIS) for respective left and right MI data. Features are then calculated from the difference in multi-resolution fractal feature vector (MFFV) between the predicted and actual signals through a window of EEG signals. Finally, the support vector machine is used for classification. The proposed method estimates its performance in comparison with the linear adaptive autoregressive (AAR) model and the AAR time-series prediction of 6 participants from 2 data sets. The results indicate that the proposed method is promising in MI classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.