Abstract
This paper discusses the effects of stochastically varying inert particle parameters on the long-term behaviour of detonation front propagation. The simulation model involves a series of cylindrical high explosive unit cells, each embedded with an inert spherical particle. Detonation shock dynamics theory postulates that the velocity of the shock front in the explosive fluid is related to its curvature. In our previous work, we derived a series of partial differential equations that govern the propagation of the shock front passing over the inert particles and developed a computationally efficient simulation environment to study the model over extremely long timescales. We expand upon that project by randomising several properties of the inert particles to represent experimental designs better. First, we randomise the particle diameters according to the Weibull distribution. Then we discuss stochastic particle spacing methods and their effects on the predictability of the shock wave speed. Finally, we discuss mixtures of plastic and metal particles and material inconsistency among the particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.