Abstract

Transparent conductive oxide (TCO) thin films are cornerstones in many optoelectronic applications including displays, photovoltaics and touchscreens. In these devices, thin films with simultaneous high optical transparency and electrical conductivity are needed. Ideally, heat generated during normal device operation must ideally be compensated for to achieve optimum functionality. One possible way to address the thermal management problem is adding thermoelectric (TE) properties to TCO films. However, improving TE properties while maintaining optimal electrical conductivity and optical transparency is challenging: thermal and electrical transport properties are deeply intertwined. Here, we demonstrate an approach allowing for independent optimization of optical transparency, electrical conductivity and thermal conductivity. An embedded nanopattern structure is filled with indium tin oxide (ITO) and sandwiched between two ITO layers. The resulting triple-layered structure exhibits reduced thermal conductivity and excellent electrical conductivity. This is made possible by electron channels in the embedded ITO nanopattern that electrically connect top and bottom layers, while at the same time limiting phonon-mediated heat conduction. The filling fraction and thickness of the nanopattern are adjusted to improve optical transmission, achieving transparency higher than bare ITO film. The result is a transparent TCO triple layer film with simultaneous high TCO and thermoelectric figures of merit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.