Abstract

This paper describes a dynamic TCAM architecture with planar complementary capacitors, transparently scheduled refresh (TSR), autonomous power management (APM) and address-input-free writing scheme. The complementary cell structure of the planar dynamic TCAM (PD-TCAM) allows small cell size of 4.79 μm 2 in 130 nm CMOS technology, and realizes stable TCAM operation even with very small storage capacitance. Due to the TSR architecture, the PD-TCAM maintains functional compatibility with a conventional SRAM-based TCAM. The combined effects of the compact PD-TCAM array matrix and the APM technique result in up to 50% reduction of the total power consumption during search operation. In addition, an intelligent address-input-free writing scheme is also introduced to facilitate the PD-TCAM application for the user. Consequentiy the proposed architecture is quite attractive for realizing compact and low-power embedded TCAM macros for the design of system VLSI solutions in the field of networking applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call