Abstract

<span lang="EN-US">The use of a ground penetrating radar (GPR) system that operates at low frequencies allows the detection of embedded objects underground from the earth’s surface deeper than high frequency. However, the output signal generated from the system using <a name="_Hlk111888456"></a>pulse modulation (PM) technique and high-frequency carrier, has many high ripple signals consequently resulting in a blurry image. Nevertheless, this ripple signal can be minimized by reprocessing the signal using an envelope detector method. In this study, an envelope detection technique called ArJED<sup>©</sup> asynchronous full-wave (AFW) was used in the GPR system and was tested at a frequency range from 0.06 to 0.08 GHz. A dipole antenna has been used as an embedded object detection sensor of the GPR system. The detection system of embedded objects involves four depths starting with 2 cm depth, 5 cm, 7 cm, and 20 cm. A comparison of embedded object images before and after the application of the envelope detection technique was done and proved that the proposed envelope detection technique has produced a clearer radargram image of the GPR system.</span>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.