Abstract
This chapter presents a unified method for designing nonlinear motion control software of traveling control by non-holonomic two-wheeled inverted pendulum mobile robots, where self-balancing control is designed with a backstepping approach. The work described in this chapter focuses on the design and implementation of control software based on the use of a specialized notation formally defined by Petri nets. The software generates motor torque inputs for traveling control based on self-balancing control with on-line elaboration of the posture angle of the inverted pendulum. While traditional techniques offer limited support for validating control software design before producing final code, the proposed notation is easy to use in the specific controller design and it benefits from validation techniques available for Petri nets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.