Abstract

ABSTRACTMultiscale modeling using an embedded cluster approach is presented and applied to study the structure and properties of molecular crystals. We discuss the results of hydrostatic compression modeling of 1,1-diamino-2,2-dinitroethylene obtained with the embedded cluster model and the Hartree-Fock method and compare these with the full periodic crystal structure calculations. Details of the electronic structure of the perfect, highly compressed material are discussed. The results demonstrate the applicability of the embedded cluster model. We show that the band gap of the perfect material is not sensitive to hydrostatic compression, but some changes induced by the pressure take place in the valence band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.