Abstract

This paper reviews the technology of embedded capacitors, which has gained importance with an increase in the operating frequency and a decrease in the supply voltage of electronic circuits. These capacitors have been found to reduce the number of surface-mount capacitors, which can assist in the miniaturization of printed wiring boards. This paper describes various aspects of embedded capacitors, such as electrical performance, available dielectric materials, manufacturing processes, and reliability. Improvement in electrical performance is explained using a cavity model from the theory of microstrip antennas. The advantages and disadvantages of dielectric materials such as polymers, ceramics, polymer–ceramic composites, and polymer–conductive filler composites are discussed. Various manufacturing techniques that can be used for the fabrication of embedded capacitors are also discussed. Embedded capacitors have many advantages, but failure of an embedded capacitor can lead to board failure since these capacitors are not reworkable. The effect of various environmental stress conditions on the reliability of embedded capacitors is reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.