Abstract

We numerically investigate the impact of boron nitride (BN) domains on the transport properties of graphene nanoribbons with lengths ranging from a few to several hundreds of nanometers and lateral size up to 4 nm. By varying the size and morphology of the BN islands embedded in the graphene matrix, a wide transport tunability is obtained from perfect insulating interfaces to asymmetric electron-hole transmission profiles, providing the possibility to engineer mobility gaps to improve device performances. Even in the low-density limit of embedded BN islands, transport properties are found to be highly dependent on both the BN-domain shape and the size with a strong tendency toward an insulating regime when increasing the number of ionic bonds in the ribbon. This versatility of conduction properties offers remarkable opportunities for transport gap engineering for the design of complex device architectures based on a newly synthesized one-atom hybrid layered material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call