Abstract

Building-integrated photovoltaics (BIPV) is seen as a key technology to reduce the environmental impact and net power consumption of buildings. The integration of PV into building components, such as façade, window, roof or shading elements, leads to a distributed generation over the building envelope with a profound impact on the electrical installation. Designing the electrical system with string inverters and a possible wide variety of module sizes and technologies is a challenging task. To overcome this issue, Module-Level Converters (MLCs) can be used. A supplementary benefit is that the consequences of partial shading can strongly be reduced. This paper investigates whether the current generation of MLCs is suited for embedment in facade BIPV modules. The PV output is categorized and compared to the input parameters of the converters. Besides the discrepancy between the physical dimensions of the converters and the desired installation location, thermal and electrical measurements on a prototype BIPV curtain wall element reveal that daily energy losses can be as high as 50% due to thermal overload when used in a moderate climate such as Belgium. The paper concludes by discussing further standardization of BIPV module-level converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.